Welding problems and defects – causes and remedies

Spatter

Causes
- Welding current too high.
- Arc too long.
- Incorrect polarity – arc blow.
- Insufficient gas shielding.

Remedies
- Reduce welding current.
- Adjust arc length.
- Use the correct polarity for the consumable.
- Check shielding gas type and flow rate. Clean gas nozzle. Ensure torch to plate angle.

Deformation

Causes
- Unfavourable bead positioning.
- Incorrect use of electrode.
- Root gap too small.
- Electrode size too big.
- Travel speed too high.

Remedies
- Increase joint included angle.
- Clamp.
- Select cleaner parent material or buffer plate edges.
- Reduce travel speed.

Arc blow

Causes
- Arc striking difficulties.
- Lack of fusion defects.
- Solidification cracks.
- Undercut.
- Lack of root penetration.

Remedies
- Use a smaller diameter electrode.
- Use arc welding.
- Apply strongly tack and bottom passes.
- Use smaller electrode, use lower welding current. Apply stringer bead technique.
- Lower the travel speed until weld solidifies in an elliptical form.

Longitudinal cracks in the heat affected zone

Causes
- The base material is prone to hardening (because of high C content or other alloying elements).
- Weld costs down too rapidly.
- Hydrogen in the weld (e.g. because of wet weld edges, wrong or damp electrodes or shielding gases.

Remedies
- If possible, choose a material with a lower weldability. If not, apply and maintain preheat and interpass temperature and delayed cooling.
- Apply a higher preheat temperature.
- Remove moisture from welding zone. Use low-hydrogen weld consumables from moisture protective packagings or rebake welding consumables.

Lack of fusion defects

Causes
- Weld pool too large.
- Arc voltage too low.
- Earth lead is not connected properly.
- Welding current too low.
- Joint included angle is incorrect.
- Unweldable bead positioning.

Remedies
- Increase welding current and lower travel speed.
- Reduce deposition rate and/or increase travel speed.
- Increase joint included angle.
- Position electrode or torch in such a way that the plate edges are melted.
- Position beads in such a way that sharp angles with other beads or plate edges are avoided.

Crater cracks

Causes
- The welding ended too abruptly. The crack begins at a void in the welding crater, caused by the solidification shrinkage.

Remedies
- When finishing, move back the electrode to fill-up the crater.
- With root pass welding, quickly move the arc from the weld pool to the plate edge.
- Increase crater fill-time on power source.

Undercut

Causes
- Insufficient de-slagging between passes.
- Convex passages which produce slag pockets.
- Unweldable bead sequence.

Remedies
- Select cleaner parent material or buffer plate edges.
- Increase joint angle, use lower welding current.
- Use smaller electrode, use lower welding current. Apply stringer bead technique.
- Lower the travel speed until weld solidifies in an elliptical form.
- Apply strongly tack and bottom passes.

Solidification cracks

Causes
- Formation of phases with a low melting point in the weld, due to P, S, Cu – mostly from the parent metal.
- Unweldable joint geometry – width/depth ratio < 1.
- Weld pool too large.
- Travel speed too high (weld solidifies in an arrow shaped). When finishing, travel back.
- Tack welds or root passes not sufficiently strong for shrinkage forces, in case of restrained joints.

Remedies
- Use an AC electrode where possible.
- Try welding away from the earth clamp connection. Try splitting the earth clamp and connect to both sides of the joint.
- Use an AC electrode where possible. Position earth lead clamp such that it counteracts the influence of heavy work piece parts. Keep arc as short as possible.

Welding problems – causes

<table>
<thead>
<tr>
<th>Issue</th>
<th>Causes</th>
<th>Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatter</td>
<td>Welding current too high.</td>
<td>Reduce welding current.</td>
</tr>
<tr>
<td>Deformation</td>
<td>Unfavourable bead positioning.</td>
<td>Increase joint included angle.</td>
</tr>
<tr>
<td>Arc blow</td>
<td>Arc striking difficulties.</td>
<td>Select cleaner parent material or buffer plate edges.</td>
</tr>
<tr>
<td>Longitudinal cracks in the heat affected zone</td>
<td>Base material prone to hardening.</td>
<td>Use a smaller diameter electrode.</td>
</tr>
<tr>
<td>Lack of fusion defects</td>
<td>Weld pool too large.</td>
<td>Increase joint angle, use lower welding current.</td>
</tr>
<tr>
<td>Crater cracks</td>
<td>The welding ended too abruptly.</td>
<td>Select cleaner parent material or buffer plate edges.</td>
</tr>
<tr>
<td>Undercut</td>
<td>Insufficient de-slagging between passes.</td>
<td>Increase joint angle, use lower welding current.</td>
</tr>
<tr>
<td>Solidification cracks</td>
<td>Formation of phases with a low melting point in the weld.</td>
<td>Use a smaller diameter electrode.</td>
</tr>
</tbody>
</table>
| Porosity | Moisture, for example from incorrectly stored electrodes or fluxes. | Use arc welding.
- Use arc welding.
- Apply strongly tack and bottom passes. |
| Slag inclusions | Insufficient de-slagging between passes. | Use arc welding.
- Use arc welding.
- Apply strongly tack and bottom passes. |
| Lack of root penetration | Insufficient de-slagging between passes. | Use arc welding. |

See www.esab.com for more information.